
SOIL DISINFESTATION WITH STEAM IN CALIFORNIA STRAWBERRY PRODUCTION

Mark Hoffmann¹, Tom Miller¹, John Rachuy¹, Nathan Dorn², Ian Greene³, Janet Broome⁴, Alexandra Barbella⁴, Rachael Goodhue¹ & Steven Fennimore¹

¹University of California, Davis , CA ²Reiter Affiliated Companies, Salinas, CA ³Ramco Norcal, Salinas, CA ⁴Driscoll's Strawberry Assoc. Inc., Watsonville, CA

gti.

VALLEY

AGRICULTURAL SOILS

'The history of civilization is the history of the soil'

(E. V. Wilcox, 1947: 'Acres and People - The Eternal Problem of China and India')

'Many factors may contribute to ending a civilization, but an adequate supply of fertile soil is necessary to sustain one'

(D. R. Montgomery, 2007: 'Dirt - The Erosion of Civilizations')

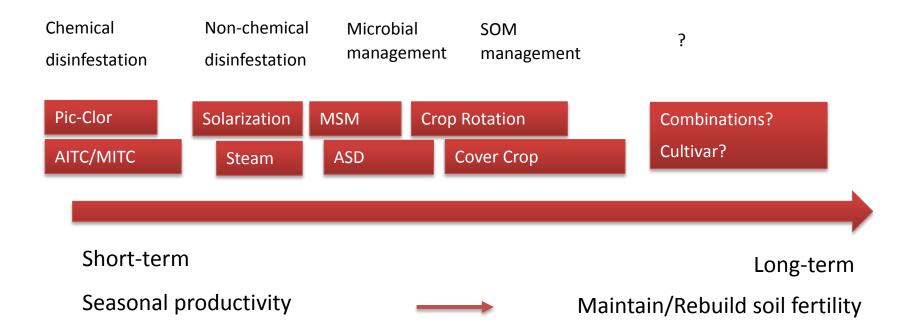
'Suicidal farming' (Wilcox, 1947, p. 142): Mismanagement leads to loss of soil fertility

- Loss of capacity to hold and/or distribute nutrients
- Soil erosion
- Accumulation of toxic substances
- Pathogen supportive conditions

Soil Management: Need of site specific short-term and long-term management systems

SOIL-MANAGEMENT

MB Alternatives for Pre-Plant:


- Managing soil fertility
- Controlling/Suppressing pests and weeds
- Environmental friendly

Current Problems:

- Site specific decisions (site history? database?)
- Impact of soil quality parameters on pathogen suppression and yield (e.g. microbial communities, SOM quality, humus quality, fertilizer)
- Distribution of pathogens in soil (more specific assessment methods)
- Inconsistency of currently available non-fumigant methods
- Short-term lease of agricultural ground

SOIL-MANAGEMENT

WHY STEAM?

- Provides relative consistency
- Ability to treat areas which are restricted by township caps and pesticide regulations
- No chemicals involved: Interesting for organic farming
- Potential for service and potential for technical improvement: Interesting for industry
- Easy to combine with other management methods

 Potentially useful technique for future precise soil microbial management systems

Steam is a valuable addition to alternative soil disinfestation and soil management methods

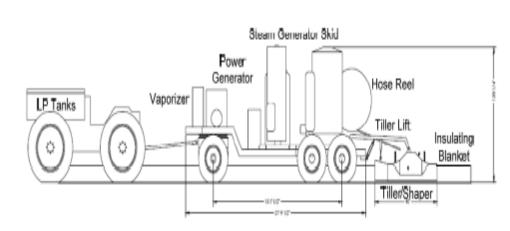
EFFECTS OF STEAM

- Increases granularity of heavy soils
- Increases nutrient availability
- Increased Ammonium levels and increased soluble salts
- Acidic soils release toxic amounts of manganese
- Kills bacteria and fungi (disease control)
- Kills weed seeds

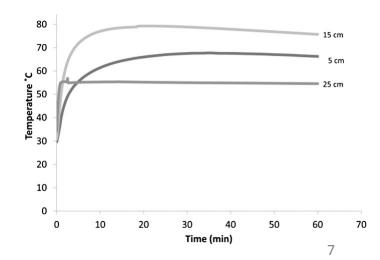
(K.F. Baker, 1957: 'The U.C. System for Producing Healthy Container-Grown Plants')

No plants, blank soil, laboratory

	Non-	Steam
	treated	
NH4 ⁺ (N ppm)	4.03	6.02
NO3 [–] (N ppm)	41.3	58.4
SOM (% LOI)	3.66	3.75

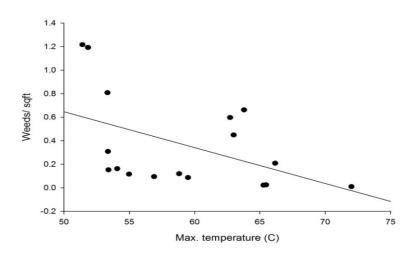


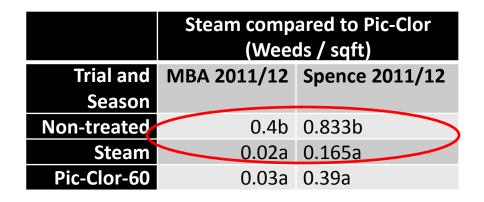
Commercial field


	Non- treated	Steam
NH4⁺ (N ppm)	19.705	17.83
NO3 [–] (N ppm)	18.7425	33.74
SOM (% LOI)	3.73	4.03

ALPHA PROTOTYPE STEAM MACHINE

- Tractor towed and propane fired
- Clayton 100 HP Steam generator
- Tiller/Shaper system to inject steam in bed
- Build for **52" beds**
- Speed: 31 51 hours/acre
- Propane consumption: 1500 2500 gal/acre
- Water consumption: 10.000 17.000 gal/acre
- Ca. \$ 3.500 4.500 / acre
- Year of construction: 2011




WEED CONTROL VIA STEAM

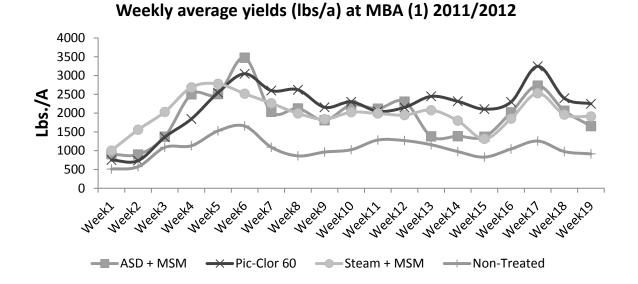
Soil Temperature vs. weeds /sqft

Weeds in a strawberry field in Salinas, CA

	Steam compared to ASD (Weeds/ sqft)	
Trial and	Fuji	TCR
Season	2014/15	2012/2013
Non-treated	0.46b	2.32b
ASD	0.25ab	2.98b
Steam +	0.03a	0.138a
MSM		
Steam	-	0.047a

PATHOGEN CONTROL VIA STEAM

35 30 h -non-treated 25 ssol % ····steam + MSM -steam а 10 5 а 0 6/30 7/31 8/31 10/1

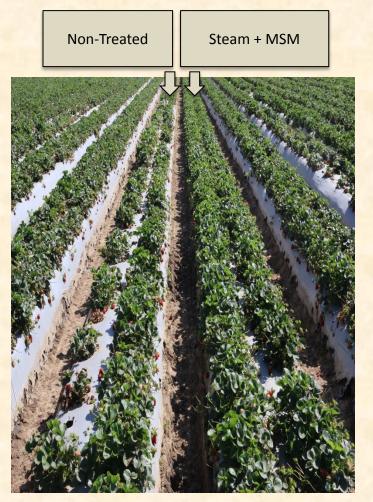

Organic Ranch infested with M. phaseolina

	% Reduction of <i>Verticillium dahliae</i> in soil
Trial and Season	Fuji 2014/15
Non-treated	12.5% b
ASD	25% ab
Steam + MSM	45.8 % a

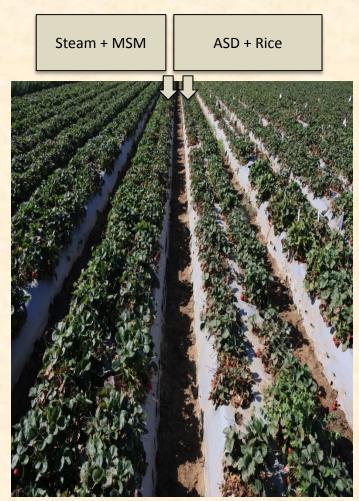
	% Reduction of Pythium ultimum	
Trial and	TCR 2012/13	Spence 2014/15
Season		
Non-treated	48.1 % b	72.7 % ns.
Steam	89.3 % a	86.7 % ns.
ASD	50,1 % b	}
Steam +	96.4 % a	81.2 % n.s.
MSM		

Disease progress of Macrophomina phaseolina in strawberry

YIELDS WITH STEAM

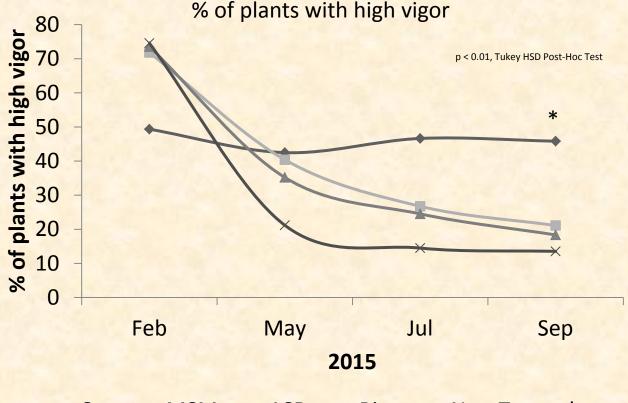


	Steam compared to Pic- Clor	
Trial and	MBA (2)	Spence
Season Non-treated	2011/12 24,401 ns.	2011/12 16,887 b
Steam	32,320 ns.	19,876 a
Pic-Clor-60	29,492 ns.	21,169 a


	Steam compared to ASD & MSM		
Trial and	TCR	Мс	Fuji
Season	2012/13	Fadden	2014/15
		2013/14	
Non-treated	23,028 b	33,411 b	100 % c
Steam	49,207 a	38,134 ab	-
ASD + Rice	29,175 b	42,972 a	121 % b
MSM	-	39,335 ab	-
Steam+MSM	50,479 a	42,455 a	151 % a

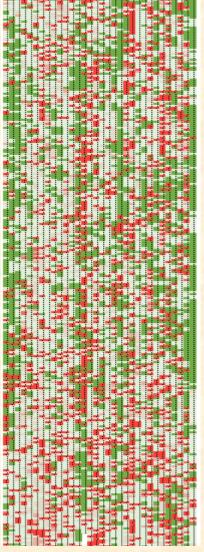
EXAMPLE: VIGOR

Organic Ranch (Fuji Rd., Salinas CA) high salt levels in Spring and Verticillium dahliae pressure

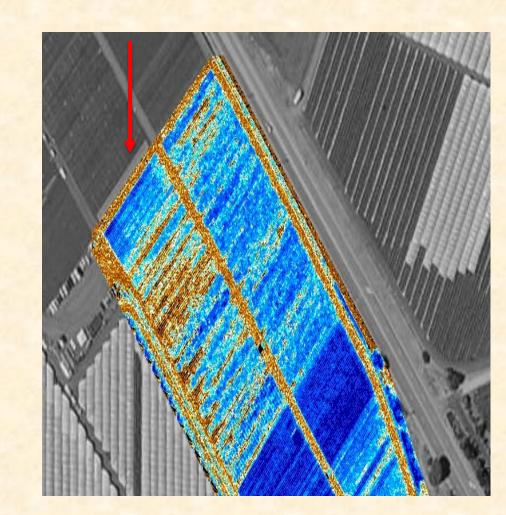


September 2015

EXAMPLE: VIGOR

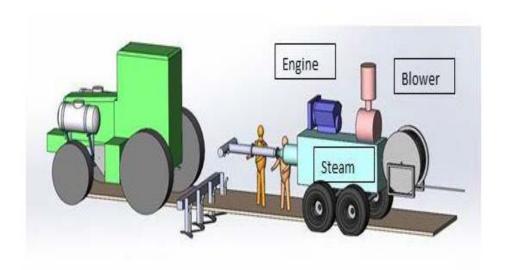

Organic Ranch (Fuji Rd., Salinas CA) high salt levels in Spring and Verticillium dahliae pressure

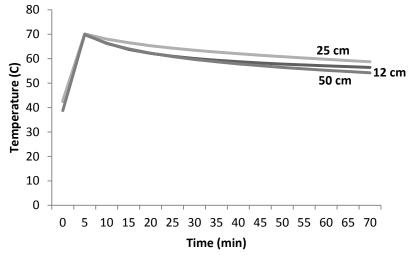
 \rightarrow Steam + MSM \rightarrow ASD \rightarrow Rice \rightarrow Non-Treated


	Total Yield per season(%)
Non-Treated	100 %
Rice	113 %
ASD + Rice	121 %
Steam + MSM	151 %

September 2015

EXAMPLE: VIGOR


Organic Ranch (TCR, Watsonville, CA): Macrophomina phaseolina pressure



2015: FASTER, CHEAPER, MORE EFFICIENT: NEW DIRECT FIRE STEAM MACHINE

- Tractor towed & propane fired
- Build to treat flat fields
- Johnson direct-fire combustion burner
- Plows which inject steam at 12" depth
- Estimated speed: ca.10 15 hours/acre
- Propane consumption: 800–900 gal/acre
- Water consumption: ca. 10.000 gal/acre
- Estimated costs ca. \$ 2.500 / acre
- Year of construction: 2015

2015: FASTER, CHEAPER, MORE EFFICIENT: NEW DIRECT FIRE STEAM MACHINE

FUTURE: COVER CROPS, AITC & STEAM?

USDA #2015-07297 (MB Transition Program)

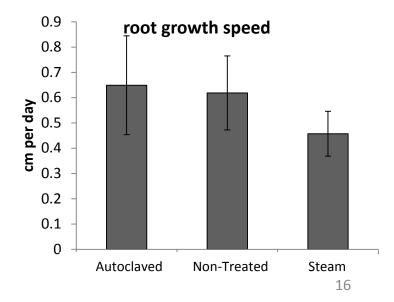

- Combine AITC with Steam to increase pathogen control efficacy
- Effect of cover crops on pathogen suppressive conditions in AITC/Steam based pest management systems
- Increase energy efficacy of Steam treatments via catalytic chemicals (e.g. Quicklime)

Photo by Eric Brennan & Mark Bolda

Other projects:

- Temporal changes in soil microbial community due to Steam treatment
- Physiological effects of steam treated soil on strawberry plants

CONCLUSIONS

- Steam controls weeds/pathogens and on similar levels than Pic-Clor 60
- Yields on similar levels than Pic-Clor 60
- Critical: Achievement of temperatures over 60 C for 20 min
- Even when temperatures are not achieved, steamed usually yields 20-30 % more than in non-treated areas (due to N-release)
- With new prototype steam machine, soil disinfestation via steam is becoming more economical and also commercial available.
- Valuable tool in the tool box

Future of Soil Management in Strawberry:

- Site specific!
- Chemical disinfestation: e.g. Pic-Clor, AITC/MITC,...
- Non-chemical disinfestation: e.g. Solarization, Steam,....
- Microbial management: e.g. Cover Crops, ASD, MSM,...

Thank you for your attention

Funding:

USDA #2013-04491 (MB Transition Program)

Tri Cal Inc.

Propane Education and Research Council

Reiter Aff. Comp. Inc.

California Department of Pesticide Regulations

Collaborations:

People:

Frank Martin, USDA Salinas, CA Steve Koike, UC ANR, Salinas, CA Peter de Groot, Valley Fabrications, Salinas, CA Tim Kingston, Gas Technology Institute, Des Plaines, IL Dan Hodel, Johnson Gas Appliance Comp., Cedar Rapids, IA Jason Tracy, Valley Fabrications, Salinas, CA Mike Stanghellini, TriCal. Inc., Hollister, CA

Blank